激(ji)光(guang)電弧(hu)(hu)復合焊(han)(han)有時也稱電弧(hu)(hu)輔(fu)助(zhu)激(ji)光(guang)焊(han)(han)接技術(shu),其主要(yao)目的是有效利用激(ji)光(guang)和電弧(hu)(hu)的熱(re)源,充分發揮兩種(zhong)熱(re)源各自優勢,取(qu)長(chang)補(bu)短(duan),以較小的激(ji)光(guang)功率(lv)(lv)獲得較大的熔(rong)深(shen),穩(wen)定焊(han)(han)接過程,提高焊(han)(han)接效率(lv)(lv),降(jiang)低激(ji)光(guang)焊(han)(han)接的裝配(pei)精度和應用成本。
采用激(ji)光(guang)和電(dian)弧(hu)(hu)進行(xing)(xing)焊(han)(han)(han)接的(de)方(fang)(fang)式有兩種(zhong)方(fang)(fang)式:一(yi)種(zhong)是激(ji)光(guang)與(yu)電(dian)弧(hu)(hu)沿焊(han)(han)(han)接方(fang)(fang)向(xiang)前(qian)后串行(xing)(xing)排列,且兩者相距較大,作(zuo)為兩個獨立的(de)熱源(yuan)作(zuo)用于(yu)焊(han)(han)(han)件,主要(yao)利用電(dian)弧(hu)(hu)熱源(yuan)對焊(han)(han)(han)縫進行(xing)(xing)預熱或后熱,以提高材料對激(ji)光(guang)的(de)吸收率,改善焊(han)(han)(han)縫組織和性能(neng);另一(yi)種(zhong)是激(ji)光(guang)和電(dian)弧(hu)(hu)共同作(zuo)用于(yu)同一(yi)個熔池,焊(han)(han)(han)接過(guo)程(cheng)中激(ji)光(guang)和電(dian)弧(hu)(hu)之間(jian)存在相互作(zuo)用和能(neng)量的(de)耦合,也就是我們(men)常說的(de)激(ji)光(guang)電(dian)弧(hu)(hu)復合焊(han)(han)(han)接。
激(ji)光電弧(hu)復合焊(han)接(jie)又分同(tong)軸復合和(he)旁軸復合,如圖3-55所示。

1. 同(tong)軸(zhou)復合(he)(he)是激(ji)光(guang)(guang)束與(yu)電(dian)(dian)弧(hu)(hu)同(tong)軸(zhou)作用(yong)在(zai)焊(han)(han)件的同(tong)一位置,即激(ji)光(guang)(guang)穿(chuan)過(guo)電(dian)(dian)弧(hu)(hu)中心(xin)或電(dian)(dian)弧(hu)(hu)穿(chuan)過(guo)對稱布置的環(huan)狀(zhuang)光(guang)(guang)束或多束幾何中心(xin)到達(da)焊(han)(han)件表面。激(ji)光(guang)(guang)-TIG電(dian)(dian)弧(hu)(hu)復合(he)(he)是較為簡(jian)單的一種同(tong)軸(zhou)復合(he)(he)焊(han)(han)接(jie)(jie)方(fang)式(shi),焊(han)(han)接(jie)(jie)時,激(ji)光(guang)(guang)在(zai)熔池(chi)中形成(cheng)的小孔對電(dian)(dian)弧(hu)(hu)具有(you)吸引和壓縮作用(yong),增強了電(dian)(dian)弧(hu)(hu)的電(dian)(dian)流密(mi)度(du)(du)和穩定(ding)性;即使在(zai)高(gao)速焊(han)(han)接(jie)(jie)條件下,仍可保(bao)證電(dian)(dian)弧(hu)(hu)穩定(ding),焊(han)(han)縫(feng)成(cheng)形良好,氣孔、咬邊等缺陷(xian)大(da)大(da)減(jian)少。它的焊(han)(han)接(jie)(jie)速度(du)(du)一般是激(ji)光(guang)(guang)焊(han)(han)接(jie)(jie)速度(du)(du)的2倍以上(shang),更遠遠大(da)于TIG焊(han)(han)。這(zhe)種復合(he)(he)焊(han)(han)接(jie)(jie)方(fang)法主要(yao)用(yong)于薄板(ban)或薄壁不銹鋼管的焊(han)(han)接(jie)(jie),焊(han)(han)接(jie)(jie)速度(du)(du)高(gao)達(da)15m/min,焊(han)(han)縫(feng)成(cheng)形明顯改(gai)善,且降低了對坡口加工(gong)精度(du)(du)的要(yao)求。
2. 旁(pang)軸(zhou)(zhou)復(fu)(fu)合(he)是激(ji)(ji)(ji)(ji)光(guang)束和(he)電弧(hu)呈一定角度(du)地作用(yong)(yong)在焊(han)(han)(han)(han)(han)(han)件的(de)同一位置,激(ji)(ji)(ji)(ji)光(guang)束與電弧(hu)呈不對稱(cheng)的(de)幾何(he)關系(xi)。激(ji)(ji)(ji)(ji)光(guang)可(ke)以(yi)在電弧(hu)前方(fang)(fang)引入,也可(ke)以(yi)要電弧(hu)后方(fang)(fang)引入。旁(pang)軸(zhou)(zhou)復(fu)(fu)合(he)容易實現(xian),可(ke)以(yi)采用(yong)(yong)激(ji)(ji)(ji)(ji)光(guang)束與TIG電弧(hu)、MAG/MIG電弧(hu)或等離子弧(hu)復(fu)(fu)合(he)。激(ji)(ji)(ji)(ji)光(guang)-MIG復(fu)(fu)合(he)焊(han)(han)(han)(han)(han)(han)是目前應用(yong)(yong)最廣(guang)泛(fan)的(de)一種復(fu)(fu)合(he)熱源(yuan)焊(han)(han)(han)(han)(han)(han)接(jie)方(fang)(fang)式,由(you)于MIG具有送絲和(he)熔(rong)滴過渡(du),一般采用(yong)(yong)旁(pang)軸(zhou)(zhou)復(fu)(fu)合(he)方(fang)(fang)式,激(ji)(ji)(ji)(ji)光(guang)-MIG復(fu)(fu)合(he)焊(han)(han)(han)(han)(han)(han)不但可(ke)增大熔(rong)深,改(gai)(gai)善焊(han)(han)(han)(han)(han)(han)接(jie)適(shi)應性(xing),還(huan)可(ke)通(tong)過填(tian)充焊(han)(han)(han)(han)(han)(han)絲改(gai)(gai)善焊(han)(han)(han)(han)(han)(han)縫(feng)組織和(he)性(xing)能(neng)。采用(yong)(yong)激(ji)(ji)(ji)(ji)光(guang)-MIG復(fu)(fu)合(he)焊(han)(han)(han)(han)(han)(han)時(shi)(shi)焊(han)(han)(han)(han)(han)(han)接(jie)速度(du)比單(dan)激(ji)(ji)(ji)(ji)光(guang)或單(dan)MIG焊(han)(han)(han)(han)(han)(han)時(shi)(shi)提高(gao)(gao)約1/3,而輸入能(neng)量減少了1/4,更體現(xian)出復(fu)(fu)合(he)焊(han)(han)(han)(han)(han)(han)的(de)高(gao)(gao)效和(he)節能(neng)優勢(shi)。激(ji)(ji)(ji)(ji)光(guang)-MIG復(fu)(fu)合(he)焊(han)(han)(han)(han)(han)(han)比激(ji)(ji)(ji)(ji)光(guang)-TIG復(fu)(fu)合(he)焊(han)(han)(han)(han)(han)(han)焊(han)(han)(han)(han)(han)(han)的(de)板厚更大,焊(han)(han)(han)(han)(han)(han)接(jie)適(shi)應性(xing)更強。
旁軸復合焊接根(gen)據(ju)焊接位置(zhi)(zhi)(zhi)(即兩熱(re)源的相對位置(zhi)(zhi)(zhi))的不(bu)(bu)同(tong),又分為激(ji)光(guang)前(qian)置(zhi)(zhi)(zhi)(電弧在激(ji)光(guang)之(zhi)后(hou))和激(ji)光(guang)后(hou)置(zhi)(zhi)(zhi)(電弧在激(ji)光(guang)之(zhi)前(qian))兩種形(xing)式,其焊接原(yuan)理示意(yi)圖如圖3-56所示。兩熱(re)源前(qian)后(hou)位置(zhi)(zhi)(zhi)的不(bu)(bu)同(tong)對焊縫形(xing)貌、成形(xing)影(ying)響較大。

用激光(guang)-MAG復合(he)(he)焊(han)(han)進行試驗時,在完(wan)全(quan)相同(tong)的焊(han)(han)接參(can)數下,互換兩熱(re)源(yuan)前后(hou)位置,從圖3-57和圖3-58中可(ke)(ke)以看出焊(han)(han)縫形(xing)貌截然(ran)不同(tong),激光(guang)后(hou)置焊(han)(han)縫,兩熱(re)源(yuan)都達到(dao)了(le)有效耦合(he)(he),焊(han)(han)縫表面圓潤飽滿,基本沒有飛(fei)濺;激光(guang)前置焊(han)(han)縫,焊(han)(han)縫寬窄不一(yi)且伴有大顆(ke)粒飛(fei)濺,電弧不能(neng)穩定燃燒,兩種(zhong)熱(re)源(yuan)耦合(he)(he)較(jiao)差。從上述圖中還可(ke)(ke)以知道,當熱(re)源(yuan)間(jian)距為(wei)6mm時,兩者焊(han)(han)縫形(xing)貌都處(chu)于(yu)最佳狀態。

圖(tu)3-59表示了熱源間(jian)距(ju)與熔(rong)寬關(guan)系,從圖(tu)中除了熱源間(jian)距(ju)=2mm外,激(ji)(ji)(ji)光(guang)前(qian)置(zhi)時(shi)的(de)(de)焊(han)(han)(han)(han)(han)縫(feng)熔(rong)寬均比激(ji)(ji)(ji)光(guang)后置(zhi)時(shi)較(jiao)(jiao)寬。這是因為激(ji)(ji)(ji)光(guang)前(qian)置(zhi)時(shi)沒(mei)有(you)電弧(hu)(hu)預熱母材,使(shi)焊(han)(han)(han)(han)(han)接金(jin)(jin)屬(shu)(shu)首先對激(ji)(ji)(ji)光(guang)是反射作(zuo)(zuo)(zuo)用(yong)(yong)(yong),待金(jin)(jin)屬(shu)(shu)表面(mian)微熔(rong)后,對激(ji)(ji)(ji)光(guang)能(neng)(neng)量的(de)(de)吸收(shou)才變得(de)明顯(xian),不(bu)能(neng)(neng)形成(cheng)激(ji)(ji)(ji)光(guang)小(xiao)(xiao)孔(kong)效應(ying),激(ji)(ji)(ji)光(guang)致(zhi)等離子體(ti)減少。因此,對電弧(hu)(hu)的(de)(de)引導、壓(ya)縮作(zuo)(zuo)(zuo)用(yong)(yong)(yong)減弱,弧(hu)(hu)柱在(zai)金(jin)(jin)屬(shu)(shu)表面(mian)作(zuo)(zuo)(zuo)用(yong)(yong)(yong)面(mian)積增(zeng)加,導致(zhi)激(ji)(ji)(ji)光(guang)前(qian)置(zhi)施焊(han)(han)(han)(han)(han)時(shi)的(de)(de)焊(han)(han)(han)(han)(han)縫(feng)熔(rong)寬較(jiao)(jiao)寬、熔(rong)深較(jiao)(jiao)淺、余高小(xiao)(xiao)還有(you)不(bu)同程度的(de)(de)咬邊(bian)缺陷。激(ji)(ji)(ji)光(guang)后置(zhi)施焊(han)(han)(han)(han)(han)時(shi),電弧(hu)(hu)首先對焊(han)(han)(han)(han)(han)接作(zuo)(zuo)(zuo)用(yong)(yong)(yong)點進行預熱,金(jin)(jin)屬(shu)(shu)對激(ji)(ji)(ji)光(guang)能(neng)(neng)量吸收(shou)和小(xiao)(xiao)孔(kong)效應(ying)增(zeng)強(qiang),激(ji)(ji)(ji)光(guang)對電弧(hu)(hu)的(de)(de)引導和壓(ya)縮作(zuo)(zuo)(zuo)用(yong)(yong)(yong)增(zeng)強(qiang),而且(qie)MAG焊(han)(han)(han)(han)(han)縫(feng)處于前(qian)傾(qing)焊(han)(han)(han)(han)(han)接方(fang)位,電弧(hu)(hu)力后排熔(rong)池金(jin)(jin)屬(shu)(shu)的(de)(de)作(zuo)(zuo)(zuo)用(yong)(yong)(yong)也增(zeng)大,熔(rong)滴著陸點與激(ji)(ji)(ji)光(guang)在(zai)焊(han)(han)(han)(han)(han)接金(jin)(jin)屬(shu)(shu)上的(de)(de)作(zuo)(zuo)(zuo)用(yong)(yong)(yong)點距(ju)離縮短,提高了能(neng)(neng)量的(de)(de)利用(yong)(yong)(yong)率(lv),因此焊(han)(han)(han)(han)(han)縫(feng)熔(rong)深要深些,熔(rong)寬相應(ying)要窄些。

圖3-60表示出熱源間(jian)距(ju)與熔(rong)深的關系:從圖中可知(zhi),激光(guang)后置(zhi)時(shi),熔(rong)深隨著熱源間(jian)距(ju)的增大(da)(da)(da)而增熔(rong),最(zui)小(xiao)熔(rong)深為2.9mm;激光(guang)前置(zhi)時(shi)的熔(rong)深變化恰恰與激光(guang)后置(zhi)相(xiang)反,它的最(zui)小(xiao)熔(rong)深為1.2mm,最(zui)大(da)(da)(da)熔(rong)深也只有3.9mm,充分說(shuo)明了激光(guang)與電弧空間(jian)位置(zhi)不同,焊接效(xiao)果有較(jiao)大(da)(da)(da)差異。
在激光-電弧復合焊接中(zhong),應選(xuan)(xuan)擇(ze)激光后置的方式,電弧電流小時熱(re)(re)源間距應選(xuan)(xuan)2~3mm之間;電弧電流較大時熱(re)(re)源間距要選(xuan)(xuan)5~6mm之間。
3. 有資料介紹(shao),用脈沖(chong)Nd:YAG 激光(guang)(guang)/TIG 電弧(hu)復(fu)(fu)合熱(re)(re)源在(zai)304不銹鋼板(ban)(板(ban)厚3mm,試(shi)板(ban)尺寸(cun)100mm×150mm)上進行堆焊試(shi)驗。來了解脈沖(chong)Nd:YAG激光(guang)(guang)/TIG電弧(hu)復(fu)(fu)合熱(re)(re)源堆焊過程中激光(guang)(guang)功率(lv)、激光(guang)(guang)束(shu)離焦量和焊接速度對焊縫形(xing)貌(mao)、熔深和熔寬的影響(xiang)。
焊(han)接設備采用JHM-1GXY-400X型脈沖Nd YAG 激(ji)(ji)光(guang)器和TIG WP300焊(han)機(ji)。JHM-1GXY-400X型激(ji)(ji)光(guang)器最(zui)大輸出功率500W,經焦(jiao)距(ju)70mm的(de)透鏡聚(ju)焦(jiao)后(hou)可獲得直徑0.2mm的(de)焦(jiao)斑。TIG WP300焊(han)機(ji)最(zui)大電流300A。采用旁軸復合的(de)激(ji)(ji)光(guang)后(hou)置(zhi)式進行堆(dui)焊(han)。堆(dui)焊(han)過程中采用氬(ya)氣對激(ji)(ji)光(guang)頭、TIG焊(han)槍及(ji)工件高溫區(qu)域(yu)進行保護。
試(shi)驗參(can)數(shu)均為:TIG電流(liu)I,=190A,TIG電壓U1=11~12V,泵浦燈(deng)電流(liu)IL=190A,激(ji)光束離(li)焦量e=-1mm,激(ji)光脈(mo)沖頻率f=15Hz,脈(mo)寬b=2.5ms,熱源間距d=0.5mm,焊接(jie)速度(du)u=25cm/min(此組(zu)參(can)數(shu)下激(ji)光功率為350W)。
試驗結果(guo)與分析:
1. 三(san)種(zhong)焊(han)(han)(han)(han)(han)接(jie)方法焊(han)(han)(han)(han)(han)縫(feng)(feng)(feng)(feng)橫(heng)(heng)截(jie)(jie)(jie)面(mian)(mian)形(xing)(xing)貌、熔(rong)(rong)深(shen)和熔(rong)(rong)寬(kuan)的(de)比較。單一(yi)(yi)TIG焊(han)(han)(han)(han)(han)、單一(yi)(yi)激(ji)(ji)光焊(han)(han)(han)(han)(han)和激(ji)(ji)光/TIG復(fu)合焊(han)(han)(han)(han)(han)三(san)種(zhong)情況下得到(dao)的(de)焊(han)(han)(han)(han)(han)縫(feng)(feng)(feng)(feng)橫(heng)(heng)截(jie)(jie)(jie)面(mian)(mian)形(xing)(xing)貌如圖(tu)3-61所(suo)示:單一(yi)(yi)TIG焊(han)(han)(han)(han)(han)接(jie)得到(dao)典型熱(re)導焊(han)(han)(han)(han)(han)焊(han)(han)(han)(han)(han)縫(feng)(feng)(feng)(feng),焊(han)(han)(han)(han)(han)縫(feng)(feng)(feng)(feng)深(shen)寬(kuan)比很小(xiao);激(ji)(ji)光焊(han)(han)(han)(han)(han)焊(han)(han)(han)(han)(han)縫(feng)(feng)(feng)(feng)熔(rong)(rong)寬(kuan)很小(xiao),熔(rong)(rong)深(shen)很大(da),深(shen)寬(kuan)比約為TIG焊(han)(han)(han)(han)(han)縫(feng)(feng)(feng)(feng)的(de)12倍;復(fu)合焊(han)(han)(han)(han)(han)焊(han)(han)(han)(han)(han)縫(feng)(feng)(feng)(feng)寬(kuan) 圖(tu)3-61 不同焊(han)(han)(han)(han)(han)接(jie)熱(re)源得到(dao)的(de)焊(han)(han)(han)(han)(han)縫(feng)(feng)(feng)(feng)橫(heng)(heng)截(jie)(jie)(jie)面(mian)(mian)形(xing)(xing)貌度(du)和焊(han)(han)(han)(han)(han)縫(feng)(feng)(feng)(feng)熔(rong)(rong)深(shen)都明顯增(zeng)大(da),形(xing)(xing)成(cheng)了“釘(ding)頭”形(xing)(xing)的(de)焊(han)(han)(han)(han)(han)縫(feng)(feng)(feng)(feng)橫(heng)(heng)截(jie)(jie)(jie)面(mian)(mian)形(xing)(xing)貌。三(san)者(zhe)的(de)焊(han)(han)(han)(han)(han)縫(feng)(feng)(feng)(feng)橫(heng)(heng)截(jie)(jie)(jie)面(mian)(mian)面(mian)(mian)積(ji)分(fen)別為0.6m㎡、1.1m㎡和2.4m㎡,復(fu)合焊(han)(han)(han)(han)(han)焊(han)(han)(han)(han)(han)縫(feng)(feng)(feng)(feng)的(de)橫(heng)(heng)截(jie)(jie)(jie)面(mian)(mian)面(mian)(mian)積(ji)比兩(liang)(liang)種(zhong)熱(re)源單一(yi)(yi)焊(han)(han)(han)(han)(han)接(jie)得到(dao)的(de)焊(han)(han)(han)(han)(han)縫(feng)(feng)(feng)(feng)橫(heng)(heng)截(jie)(jie)(jie)面(mian)(mian)面(mian)(mian)積(ji)之(zhi)和還要大(da)0.7m㎡左右(you),可見兩(liang)(liang)種(zhong)熱(re)源復(fu)合后產(chan)生了“1+1>2”的(de)效應。

2. 激光功(gong)(gong)率(lv)(lv)對復(fu)合焊(han)縫(feng)(feng)形貌、熔深和熔寬的影(ying)響。在其他工藝(yi)參數(shu)不(bu)變的條件下改變激光功(gong)(gong)率(lv)(lv)(P2)為70W、210W和350W進行復(fu)合焊(han)接,這三種(zhong)情況(kuang)焊(han)縫(feng)(feng)的橫截面(mian)(mian)面(mian)(mian)積(ji)(ji)依(yi)次(ci)為1.07m㎡、1.68m㎡和2.34m㎡,復(fu)合熱(re)源(yuan)(yuan)的功(gong)(gong)率(lv)(lv)分別為520W、660W和800W。這三種(zhong)情況(kuang)下單位熱(re)源(yuan)(yuan)功(gong)(gong)率(lv)(lv)形成的焊(han)縫(feng)(feng)橫截面(mian)(mian)面(mian)(mian)積(ji)(ji)依(yi)次(ci)為2.06m㎡/kW,2.55m㎡/kW和2.96m㎡/kW,從(cong)(cong)圖3-62可見。表明隨(sui)著激光功(gong)(gong)率(lv)(lv)的增(zeng)(zeng)(zeng)(zeng)大(da)(da),復(fu)合熱(re)源(yuan)(yuan)的熱(re)功(gong)(gong)率(lv)(lv)也增(zeng)(zeng)(zeng)(zeng)大(da)(da),這是因為激光功(gong)(gong)率(lv)(lv)增(zeng)(zeng)(zeng)(zeng)大(da)(da)時小孔效(xiao)應更(geng)加顯著,而且激光對TIG電弧(hu)的穩弧(hu)和壓(ya)縮(suo)作用會增(zeng)(zeng)(zeng)(zeng)強(qiang),從(cong)(cong)而使電弧(hu)能(neng)量密度增(zeng)(zeng)(zeng)(zeng)大(da)(da)。同時從(cong)(cong)圖3-63中可以看到(dao)(dao),當激光功(gong)(gong)率(lv)(lv)從(cong)(cong)70W增(zeng)(zeng)(zeng)(zeng)大(da)(da)到(dao)(dao)350W時熔深的變化很顯著,從(cong)(cong)約0.9mm增(zeng)(zeng)(zeng)(zeng)大(da)(da)到(dao)(dao)約2.0mm,增(zeng)(zeng)(zeng)(zeng)加了約110%,而熔寬的增(zeng)(zeng)(zeng)(zeng)幅相對小些,只有20%。總之,激光功(gong)(gong)率(lv)(lv)增(zeng)(zeng)(zeng)(zeng)大(da)(da)時,復(fu)合焊(han)焊(han)縫(feng)(feng)深和熔寬均增(zeng)(zeng)(zeng)(zeng)大(da)(da),復(fu)合焊(han)焊(han)縫(feng)(feng)橫截面(mian)(mian)面(mian)(mian)積(ji)(ji)增(zeng)(zeng)(zeng)(zeng)大(da)(da),復(fu)合熱(re)源(yuan)(yuan)熱(re)效(xiao)率(lv)(lv)也增(zeng)(zeng)(zeng)(zeng)大(da)(da)。

3. 激(ji)光束離(li)(li)焦(jiao)(jiao)量(liang)(liang)對復合(he)焊(han)(han)(han)焊(han)(han)(han)縫(feng)(feng)(feng)形(xing)貌、熔(rong)(rong)(rong)深(shen)(shen)和(he)(he)熔(rong)(rong)(rong)寬的(de)(de)影(ying)響(xiang)在離(li)(li)焦(jiao)(jiao)量(liang)(liang)分別(bie)為(wei)5、2、-1和(he)(he)-3四種情況下(xia)進(jin)行(xing)堆(dui)焊(han)(han)(han)試驗(yan),從圖3-64中可(ke)以看出,離(li)(li)焦(jiao)(jiao)量(liang)(liang)對焊(han)(han)(han)縫(feng)(feng)(feng)橫(heng)截(jie)(jie)(jie)面形(xing)貌有(you)(you)非常顯著(zhu)的(de)(de)影(ying)響(xiang):在離(li)(li)焦(jiao)(jiao)量(liang)(liang)e=5mm時(shi)(shi)(shi)(shi),由于工(gong)件表(biao)面激(ji)光光斑直徑(jing)過圖3-64 離(li)(li)焦(jiao)(jiao)量(liang)(liang)對復合(he)焊(han)(han)(han)焊(han)(han)(han)縫(feng)(feng)(feng)橫(heng)截(jie)(jie)(jie)面形(xing)貌的(de)(de)影(ying)響(xiang)大(da)(da),能量(liang)(liang)密度較低(di)不(bu)足(zu)產生小(xiao)孔效(xiao)應,此時(shi)(shi)(shi)(shi)的(de)(de)焊(han)(han)(han)接模式為(wei)熱傳導焊(han)(han)(han)接;離(li)(li)焦(jiao)(jiao)量(liang)(liang)e=2mm時(shi)(shi)(shi)(shi),工(gong)件表(biao)面光斑直徑(jing)減(jian)小(xiao),功率密度有(you)(you)所增大(da)(da),因此形(xing)成了(le)錐狀的(de)(de)焊(han)(han)(han)縫(feng)(feng)(feng)橫(heng)截(jie)(jie)(jie)面形(xing)貌;離(li)(li)焦(jiao)(jiao)量(liang)(liang)e=-1mm時(shi)(shi)(shi)(shi)得到的(de)(de)熔(rong)(rong)(rong)深(shen)(shen)最(zui)大(da)(da);離(li)(li)焦(jiao)(jiao)量(liang)(liang)e=-3mm時(shi)(shi)(shi)(shi)也形(xing)成了(le)典(dian)型的(de)(de)釘頭焊(han)(han)(han)縫(feng)(feng)(feng),其(qi)焊(han)(han)(han)縫(feng)(feng)(feng)熔(rong)(rong)(rong)深(shen)(shen)和(he)(he)離(li)(li)焦(jiao)(jiao)量(liang)(liang)為(wei)e=-1mm時(shi)(shi)(shi)(shi)相比有(you)(you)所減(jian)少。

激光離(li)焦量對(dui)復合焊(han)焊(han)縫(feng)(feng)熔(rong)(rong)深和熔(rong)(rong)寬(kuan)尺寸的(de)影響如(ru)圖3-65所示,離(li)焦量從-3mm增(zeng)加(jia)到(dao)(dao)5mm的(de)過程(cheng)中,焊(han)縫(feng)(feng)熔(rong)(rong)深先增(zeng)大(da)(da)(da),在離(li)焦量為-1mm時達到(dao)(dao)最大(da)(da)(da),然后隨著離(li)焦量的(de)進(jin)一(yi)步(bu)(bu)增(zeng)大(da)(da)(da)焊(han)縫(feng)(feng)熔(rong)(rong)深開始減(jian)(jian)小(xiao);焊(han)縫(feng)(feng)熔(rong)(rong)寬(kuan)隨離(li)焦量的(de)變(bian)化(hua)趨勢(shi)與熔(rong)(rong)深相(xiang)(xiang)同,隨著離(li)焦量從-3mm增(zeng)大(da)(da)(da)到(dao)(dao)5mm,焊(han)縫(feng)(feng)熔(rong)(rong)寬(kuan)也(ye)在離(li)焦量為-1mm時增(zeng)加(jia)到(dao)(dao)最大(da)(da)(da),然后隨著離(li)焦量的(de)進(jin)一(yi)步(bu)(bu)增(zeng)大(da)(da)(da)而(er)減(jian)(jian)少,從圖3-65還(huan)可以看到(dao)(dao),離(li)焦量變(bian)化(hua)會導致復合焊(han)焊(han)縫(feng)(feng)熔(rong)(rong)深發(fa)生較(jiao)大(da)(da)(da)幅(fu)度(du)(du)變(bian)化(hua),而(er)焊(han)縫(feng)(feng)熔(rong)(rong)寬(kuan)的(de)變(bian)化(hua)幅(fu)度(du)(du)則相(xiang)(xiang)對(dui)較(jiao)小(xiao)。

在圖3-64四種情況下焊縫橫截(jie)面面積測量結果依次為0.94m㎡、1.29m㎡、2.37m㎡和1.66m㎡。即隨著離焦(jiao)(jiao)量從-3mm增大(da)到5mm,復(fu)合熱(re)源熱(re)效率先增大(da),離焦(jiao)(jiao)量為-1mm時達到最(zui)大(da),然后(hou)隨著離焦(jiao)(jiao)量的進一步增大(da)而減(jian)小。
4. 焊(han)(han)(han)(han)接(jie)速(su)度(du)(du)對復(fu)(fu)合焊(han)(han)(han)(han)縫形(xing)貌、熔(rong)(rong)(rong)(rong)(rong)深和熔(rong)(rong)(rong)(rong)(rong)寬(kuan)(kuan)(kuan)的(de)(de)影(ying)響。在其他工藝參數(shu)保持不(bu)變(bian),焊(han)(han)(han)(han)接(jie)速(su)度(du)(du)分(fen)別(bie)為35cm/min、25cm/min和15cm/min的(de)(de)條件(jian)下(xia)分(fen)別(bie)進行焊(han)(han)(han)(han)接(jie)試(shi)驗,對焊(han)(han)(han)(han)縫形(xing)貌、熔(rong)(rong)(rong)(rong)(rong)深和熔(rong)(rong)(rong)(rong)(rong)寬(kuan)(kuan)(kuan)進行測量:圖(tu)3-66中可以看出(chu),隨著焊(han)(han)(han)(han)接(jie)速(su)度(du)(du)的(de)(de)減(jian)小,焊(han)(han)(han)(han)縫熔(rong)(rong)(rong)(rong)(rong)深和熔(rong)(rong)(rong)(rong)(rong)寬(kuan)(kuan)(kuan)都(dou)明顯增(zeng)大(da),當焊(han)(han)(han)(han)接(jie)速(su)度(du)(du)為15cm/min時,試(shi)板(ban)幾乎熔(rong)(rong)(rong)(rong)(rong)穿;圖(tu)3-67所示(shi)為焊(han)(han)(han)(han)接(jie)速(su)度(du)(du)對復(fu)(fu)合焊(han)(han)(han)(han)焊(han)(han)(han)(han)縫熔(rong)(rong)(rong)(rong)(rong)深和熔(rong)(rong)(rong)(rong)(rong)寬(kuan)(kuan)(kuan)的(de)(de)影(ying)響,焊(han)(han)(han)(han)接(jie)速(su)度(du)(du)從15cm/min增(zeng)大(da)到35cm/min時,復(fu)(fu)合焊(han)(han)(han)(han)焊(han)(han)(han)(han)縫熔(rong)(rong)(rong)(rong)(rong)深變(bian)化較(jiao)大(da),而(er)焊(han)(han)(han)(han)縫熔(rong)(rong)(rong)(rong)(rong)寬(kuan)(kuan)(kuan)的(de)(de)變(bian)化則相對較(jiao)小。

圖3-67中三種情況下焊縫截面面積依次為1.88m㎡、2.37m㎡和3.45m㎡。除了焊接速度外,三種情況下的其他工藝參數相同,為了消除熱輸入變化對焊縫橫截面面積的影響,計算了這三種情況下復合焊縫橫截面面積與焊接速度的乘積,結果依次為658mm3/min、592.5mm3/min 和517.5mm3/min,即截面面積與焊接速度的乘積是隨復合熱源焊接速度減少而降低,可見隨著焊接速度的減小,雖然復合焊焊縫橫截面積是不斷增大,但是復合熱源的熱效率是不斷減少的。
總之,焊(han)接(jie)速度減小(xiao)時,復合焊(han)縫(feng)熔深、熔寬和焊(han)縫(feng)橫截面面積都增大。
復合焊接的主(zhu)要優(you)點如(ru)下:
1. 焊接能量集(ji)中,焊接速度快,熔深大,比單純激光焊或電弧焊都好。
2. 電弧過程穩(wen)定(ding),既(ji)使在小電流條(tiao)件(jian)下施焊,也能(neng)穩(wen)定(ding)地(di)焊接。
3. 對接頭間隙不敏感,比激光焊好得多。
4. 可(ke)以(yi)通過(guo)焊(han)絲來改(gai)善焊(han)縫的性能,比激光焊(han)優(you)越。
5. 焊(han)縫成形美觀(guan)、單位熱輸入低,焊(han)接(jie)變形小,焊(han)后矯(jiao)正量小與激光焊(han)相當。
6. 復(fu)合(he)焊(han)接是一種高效率低(di)成本優質焊(han)縫的(de)焊(han)接工藝。
激光(guang)-電弧復合焊的種類比較多,可以(yi)根據產品的類別、材質和(he)厚度進(jin)行選用。其種類有:
1. 百瓦級激(ji)光能量+電弧復合
熱源顯(xian)示為電(dian)(dian)弧(hu)的(de)特性,激光(guang)功率能量(liang)比(bi)較(jiao)小(W≤500),激光(guang)主要(yao)起穩(wen)弧(hu)和壓縮(suo)電(dian)(dian)弧(hu)、提高電(dian)(dian)弧(hu)能量(liang)利(li)用率的(de)作用,多用于激光(guang)+鎢極(ji)氣體保護電(dian)(dian)弧(hu)的(de)復合焊接,比(bi)較(jiao)適合對(dui)薄(bo)板的(de)焊接。
2. 千瓦級激(ji)光能量(liang)+電弧復(fu)合
熱源兼有(you)激光(guang)和電弧(hu)特性,能夠(gou)充分(fen)利(li)用二者的(de)(de)優(you)點,多用于激光(guang)+MIG/MAG電弧(hu)的(de)(de)復(fu)合(he)焊(han)。適用于鋁合(he)金(jin)、鎂合(he)金(jin)、碳(tan)鋼(gang)、不銹鋼(gang)、低合(he)金(jin)高強(qiang)鋼(gang)和超高強(qiang)鋼(gang)等材料的(de)(de)焊(han)接。
3. 萬瓦級激光(guang)能量+電弧復合(he)
熱源顯示激光的特點,具有較大的焊縫熔寬比,大多采用大功率CO2激光與MAG焊的復合。它難于實現全位置焊接,主要用于船板等大厚度的焊接,設備投資較大。
激光-電(dian)弧復合(he)焊(han)(han)(han)(han)接工藝(yi)是(shi)一種具有遠大前途的(de)工藝(yi)方法,已在造船、汽車等(deng)領域大厚度高強度鋼板的(de)焊(han)(han)(han)(han)接中得到(dao)(dao)成功的(de)應用(yong)。例(li)如,用(yong)焊(han)(han)(han)(han)接熱(re)軋(ya)高強鋼,熔(rong)深可(ke)達15mm,而變(bian)形量僅為普通(tong)焊(han)(han)(han)(han)接的(de)1/10;焊(han)(han)(han)(han)接板厚為6mm的(de)T型接頭,焊(han)(han)(han)(han)接速度可(ke)達3m/min,達到(dao)(dao)了焊(han)(han)(han)(han)接速度快、變(bian)形小、質量高和間(jian)隙敏感(gan)性低的(de)要(yao)求。

